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where L(J,1)=L(1), and [1+A(P)] is a constant in
Cook’s method and equals [14+A(1) ] but is a variable
in Ruoff’s method.

This expression (11) for A(P) is arrived at by
expressing B”(P) in terms of p(1), L(1), 7(J, P), and

* A(P) with the help of Egs. (3) and (6), and integrating

(4). Hence, A(P) in (11) can be determined if the
value of A(P) can be estimated. Ruoff*> estimates the
values of A(P) from the relation (1) by means of

thermodynamics relations. For example, to evaluate
[0A(P)/dP]r, we would rewrite BS(P) as

BS(P)=p(P)[L*(P)/*(P)]. (12)
Then A(P) in (5) may be written as
A(P)=g(P)TL}P)/[*(P)Cp(P)], (13)
and the logarithm derivative of A(P) yields
1 (0A(P) 2 [B(P) 2. fOL(P)
(55) 55 Cor It 2 (o e

A(P)\ oP Jr B(P)\ aP Jr' L(P)\ oP
2 [(or(P) 1 6Cp(P)
_T(P)< apP )T_ CP(P)( aP )T' (14

From thermodynamics, we know that

[08(P)/dPr=—[ax"(P)/dTJp (15)
and

(BC;I(’P)>T=_ pé) {(ag(z{) ) e >} : 8

Hence, in the limit as P—1, the expression (14) reduces
to

ol G ol

= —2,7(1
AP Jirss B\ arf )m (1)

B o e
() \ 9P Jrpa p(1)Ce(1)

a [(%TQ),,j‘ﬁ*(l)] « 15

Thus the magnitude of the first derivative of A(P) in the
limit as P—1 may be determined if the [0x7(P)/d Tp,
[88(P)/dT Jp=1, B(1), and Cp(1) are known and the
value of A(P) may be approximated at a pressure £ by

A(P)=A(1)+P[OA(P) /0P Tprr.  (18)

Similarly the higher derivatives of A(P) may be
evaluated if the relevant thermodynamic data are
available.

The expression for \(P) in the new method, i.e.,
relation (10) described in this paper, is seen to differ
from the earlier two works for two reasons. In their
works, (i) N(P) is defined as L(J,1)/L(J, P), and
(ii) A(P) is estimated by a different procedure.

The quantities measured or known are p(1), L(J, 1),
F(I, J, P) or 7(J, P), P and T. For quartz trans-
ducers, IMP(J, P) and F(R, J, P) can be obtained
safely to 4000 bars and from room temperature to 90°K
from the work of McSkimin and Andreatch.” This in-
formation is not required if the ultrasonic measurements
are of the travel times. 3(P) is usually known only as a
function of temperature at 1 atm. However, the varia-
tion in the elastic constants with temperature at
pressure £ provides one with the temperature deriva-
tive of the isothermal compressibility. And from
relation (15) one may obtain B(P) at temperature 7°
if 8(P) is known at one atmosphere and temperature 7.
In a normal substance where 2, <P,

[ox(P) /0T Jp<[x(P1) /0T ]p, (19)
holds. So, to assume that
—[08(P) /0 PIr==[x" (P1) /dT Jpss (20)

ensures that the value of A(P) obtained from (5) is
underestimated. If ultrasonic measurements are made
as a function of pressure at more than one temperature,
a better estimate of [dx”(P) /07 ]p may be obtained by
simply incorporating [x7(P)/d1]r as an additional
parameter to be iterated according to the scheme
presented in Fig. 2. Where such information is un-
available (19) or (20) may be used. Similarly the
computation of Cp(P) from relation (16) by assuming

[0B(P) /0T Jr=~[8B(P1) /0T Jp1=1 (21)

implies that the resulting values of Cp(P) from relation
(16) will also be underestimated. However, the re-
sultant error in the estimated value of A(P) due to the
intrinsic underestimation of 3(P) and Cp(P) is likely
to be small, up to 3-4 kbar for most materials. Thus
everything in expression (5) except BS(P) and p(P)
are either known or may be approximated with reason-
able accuracy.

The iterative procedure described below is that pre-
sented in Fig. 1, because we feel that the understanding
of the procedure given in Fig. 2 will be facilitated by an
understanding of the simpler procedure. Thus the
iterative procedure described assumes that relations
(20) and (21) hold.

At P=1 atm, all the quantities involved are known;
no iteration is required to estimate the required elastic
constants of solids.

At the next higher pressure all the fundamental
quantities in the relations (3), (5), (6), (7), (8), (9),
and (10), except A\(P) and K (I, J, P), are known. The
procedure developed here involves a two stage iteration,
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Increcse Proseure (P)

SET A (P)=\ (Preceding Pressure)

sen(p)ﬂ'(?)l 2 (P) |

Jth velocity mode &

N~

Ith Resonant Frequency &

next velocity mode

) next I or
SET K (I,J,P,)= 1.0
SET K=x' N(I,J,P)
T (1,J,P)
v (1,4, P)
K'(1,4,P)
IF K'#K y IF K=k

Fi1c. 1. A flow chart of the iterative pro-
cedure to estimate the variation in the
elastic constant of a cubic solid with pres-
sure when the elastic wave velocities are

v
When all velocity modes
are calculated

8% (P)
A(P)
8" (P)
X(P)

IF X' (P)# )\ (Preceding Iteration)
IF X(P)=X (P)

All other
parameters
at pressure P

obtained from the measurement of the
resonant frequencies of a standing wave
as a function of pressure at a temperature.

END

one at the level of pressure and the other on the /th null
frequency of the Jth mode. We set X\(P) =\ (Preceding
Pressure) and K (I, J. P)=1 and estimate N (Z, J, P)
and =(Z, J, P) and K(I, J, P). If the value of K(Z, J, P)
thus obtained agrees with the previously assigned
value we compute N (I, J, P) for the (I+1)th fre-
quency. If this value of K(7, J, P) does not agree with
the previously assigned value these values of N (I, J, P)
and 7(I, J, P) are corrected by setting K(I, J, F)
equal to the value obtained last, and iterating all over
again. This is repeated till two consecutive estimates of
K(I, J, P) are the same. A similar computation is
performed for all the velocity modes. By interpolation,
from these 7(I, J, P)’s one obtains values correspond-
ing to F(R, J, P), each of which is called r(J, P).
These 7(J, P)’s in turn are used to obtain V(J, P)
which together with p(P) yield an estimate of BS(P),
A(P), BT(P), and finally A(P). If the value of \(P)
thus obtained agrees with the previously assigned value,

Tasre I. The pressure derivative of the adiabatic and iso-
thermal bulk moduli of NaCl and KCl as obtained by Bartels
and Schuele (B and S), as obtained in the present work (D)
from the data of Bartels and Schuele.

Bulk modulus
B and S D
NaCl
295°K
Adiabatic 27 5.35
Isothermal 5.35 5.38
195°K
Adiabatic 5.13 5.18
Isothermal 5.20 SR
KCl
295°K
Adiabatic 5.34 5.36
Isothermal 5.41 5.44
195°K
Adiabatic 5.34 5.36
Isothermal 5.41 5.43




